

 Designated according to Article 29 of
 Regulation (EU) No 305/2011 and member of EOTA
 (European Organisation for Technical Assessment) Member of

European Technical Assessment

ETA-14/0120 of 29/07/2024

General Part

Technical Assessment Body issuing the European Technical Assessment	Instytut Techniki Budowlanej
Trade name of the construction product	Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections
Product family to which the construction product belongs	Post-installed rebar connections with injection mortar
Manufacturer	ALSAFIX S.A.S. 114a rue Principale 67240 Gries, France
Manufacturing plant	ALSAFIX S.A.S. Manufacturing plant 1
This European Technical Assessment contains	23 pages including 3 Annexes which form an integral part of this Assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	European Assessment Document (EAD) 330087-01-0601 "Systems for post-installed rebar connection with mortar"
This version replaces	ETA-14/0120 issued on 07/10/2019

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The subject of this assessment are the post-installed connections, by anchoring or overlap connection joint of steel reinforcing bars (rebar) in existing structures made of normal weight concrete, using injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with diameter from 8 to 32 mm and VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T injection mortars are used for the post-installed rebar connections. The steel element is placed into a drilled hole previously filled with an injection mortar and is anchored by the bond between embedded element, injection mortar and concrete.

An illustration and the description of the products are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in clause 3 are only valid if the post-installed rebar connections are used in the compliance with the specifications and conditions given in Annex B.

The provisions given in this European Technical Assessment are based on an assumed working life of the rebar connections of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi static loading	See Annex C1
Characteristic resistance under seismic loading	See Annex C2

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C3

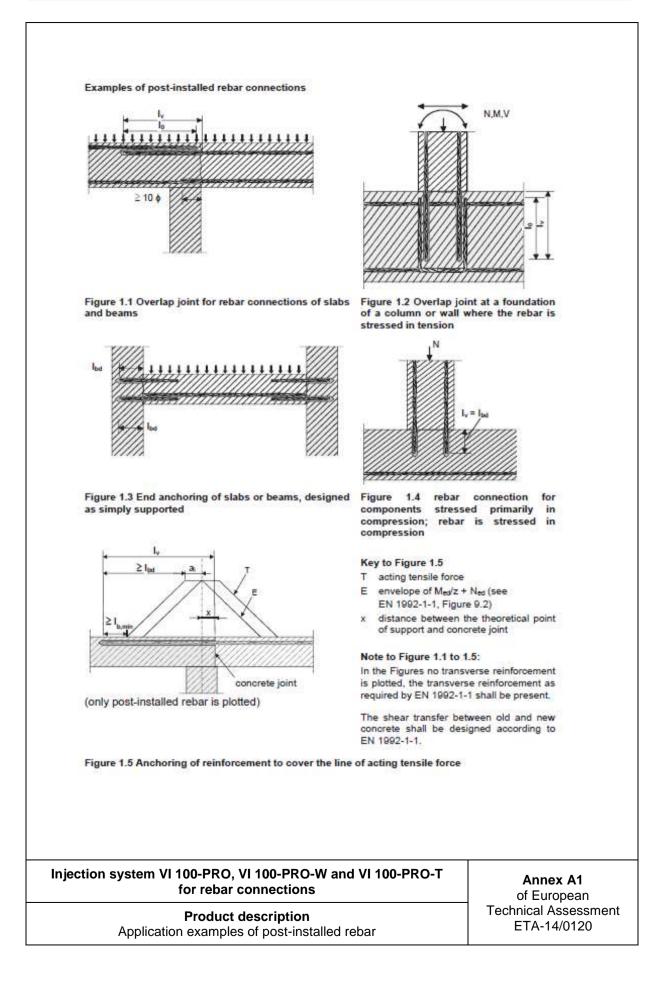
3.2 Methods used for the assessment

The assessment has been made in accordance with EAD 330087-01-0601.

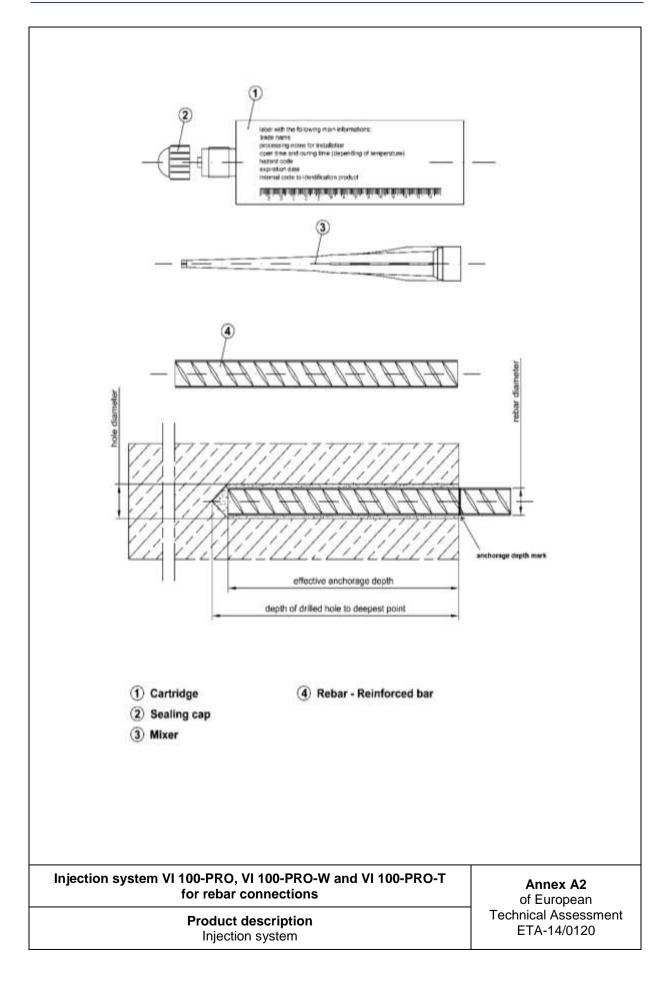
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to regulation (EU) No 305/2011).

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

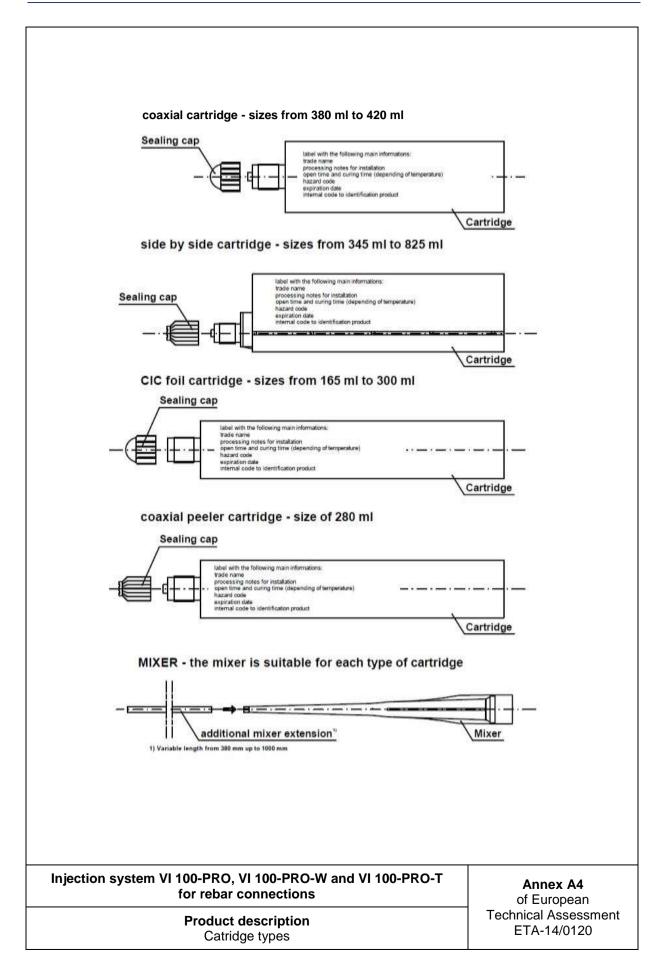
For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.


Issued in Warsaw on 29/07/2024 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Table A1: Reinforcing bars (Rebar)	
Designation	Material
Rebar according to	Bars and de-coiled rods Class B or C With fyk and k according to EN 1992-1-1:2004+AC:2010
EN 1992-1-1:2004+AC:2010	$f_{uk} = f_{tk} = k \cdot f_{yk}$ The rib height h: h ≤ 0,07 Ø

Table A2: Injection mortars


Product	Composition
VI 100-PRO VI 100-PRO-W VI 100-PRO-T (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections

Annex A3 of European Technical Assessment ETA-14/0120

Product description Materials

Specification of intended use

Anchorages subject to:

- Static and quasi-static load: from Ø8 to Ø32 mm.
- Seismic load: from Ø12 to Ø32 mm.
- Fire exposure: from Ø8 to Ø32 mm.

Working life:

Working life: 50 and/or 100 years.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C12/15 at minimum to C50/60 at maximum according to EN 206 for static and guasi-static load and for fire exposure.
- Reinforced or unreinforced normal weight concrete of strength class C16/20 at minimum to C50/60 at maximum according to EN 206 for seismic load.
- Maximum chloride content of 0,40% (Cl 0,40) related to the cement content according to EN 206.
- Non-carbonated concrete.
 Note: In case of a carbonated surface of the existing con-

Note: In case of a carbonated surface of the existing concrete structure the carbonate layer shall be removed in the area of the post-installed rebar connection with a diameter of d_s + 60 mm prior to the installation of the new rebar. The depth of concrete to be removed shall correspond to at least the minimum concrete cover according to EN 1992-1-1:2004+AC:2010. The above may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Temperature range:

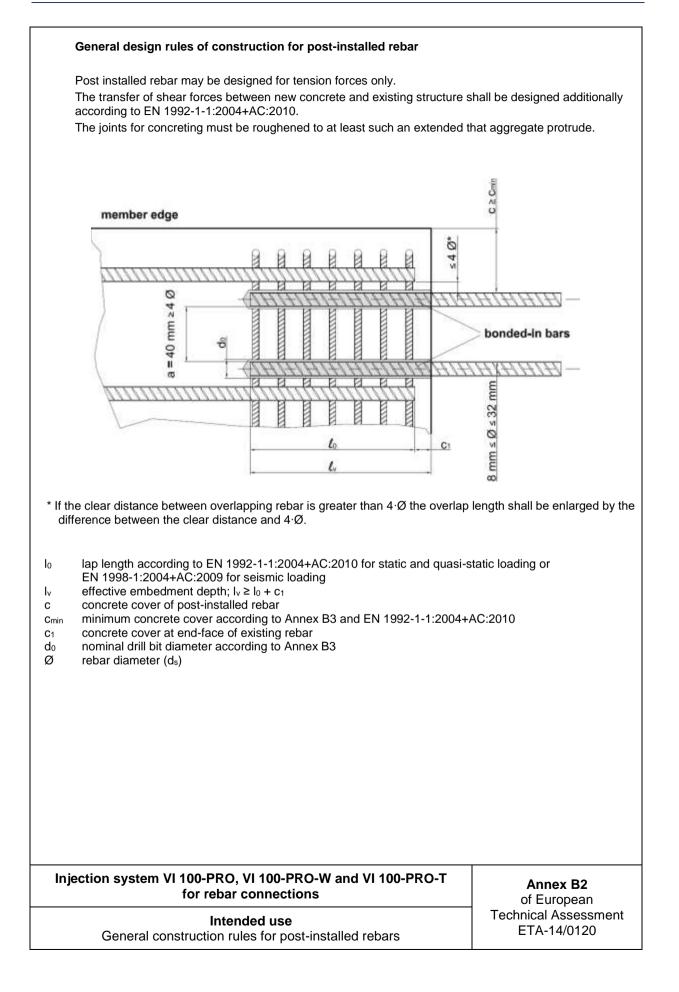
- The products may be used in the following temperature range:
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

Temperature of the base material according to Annex B4.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking into account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010 for static and quasi-static condition (see also Annex B2).
- Design according to EN 1998-1:2004+AC:2009 for seismic condition (see also Annex B2).
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete.
- It must not be installed in flooded holes.
- Overhead installation is permissible.
- Hole drilling by hammer drill (HD), hollow drill bit (HDB) or compressed air drill (CA).
- Installation of the post-installed rebar shall be done only by suitable trained installer and under supervision on the site.
- Check the position of the existing rebar (if the position of existing rebar in not known it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections

Annex B1 of European Technical Assessment ETA-14/0120

Intended use Specifications

Table B1-1: Installa	tion p	aram	eters	for sta	atic a	nd qua	asi stat	tic loac	ling					
Rebar diameter [mm]	ø	18	ø	10	ø	12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Drill bit diameter [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	26	30	35	35	40
Brush diameter [mm]	12	14	14	16	16	18	20	22	27	27	32	37	37	42
Maximum embedment depth I _{v. max} [mm]	250	400	250	500	250	600	700	800	1000	1000	1000	1000	1000	1000
¹⁾ Each of two given va	alues c	an be ı	used											

Table B1-2: Installation parameters for seismic loading

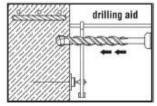

Rebar diameter [mm]	Ø12	Ø14	Ø16	Ø20	Ø22	Ø25	Ø28	Ø30	Ø32
Drill bit diameter [mm]	16	18	20	25	26	30	35	35	40
Brush diameter [mm]	18	20	22	27	27	32	37	37	42
Maximum embedment depth I _{v, max} [mm]	600	700	800	1000	1000	1000	1000	1000	1000

Table B2: Minimum concrete cover cmin without drilling aid

Drilling method	Rebar diameter Ø	C _{min}
Hammer drilling (HD)	< 25 mm	30 mm + 0,06 x l _v ≥ 2φ
Hollow drill bit (HDB)	≥ 25 mm	40 mm + 0,06 x l _v ≥ 2φ
Compressed air drilling (CA)	< 25 mm	50 mm + 0,08 x l _v
Compressed air drilling (CA)	≥ 25 mm	60 mm + 0,08 x l _v ≥ 2φ

Table B3: Minimum concrete cover $c_{\mbox{\scriptsize min}}$ when using a drilling aid

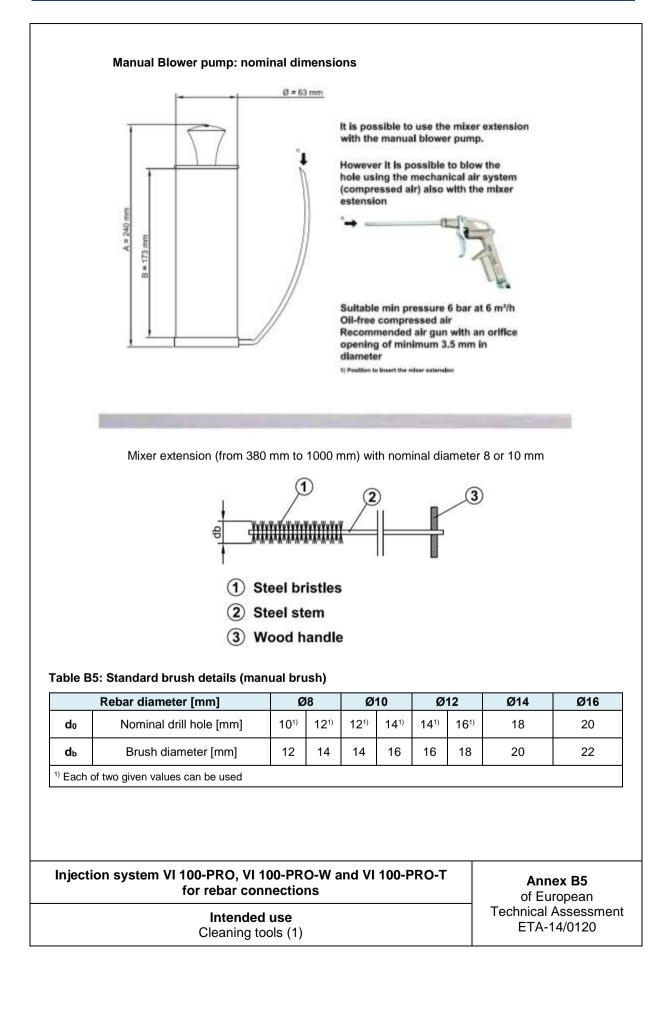
Drilling method	Rebar diameter Ø	C _{min}
Hammer drilling (HD)	< 25 mm	30 mm + 0,02 x l _v ≥ 2φ
Hollow drill bit (HDB)	≥ 25 mm	40 mm + 0,02 x l _v ≥ 2φ
Compressed of drilling (CA)	< 25 mm	50 mm + 0,02 x l _v
Compressed air drilling (CA)	≥ 25 mm	60 mm + 0,02 x l _v ≥ 2φ

The minimum concrete cover according to EN 1992-1-1:2004+AC:2010 shall be observed.

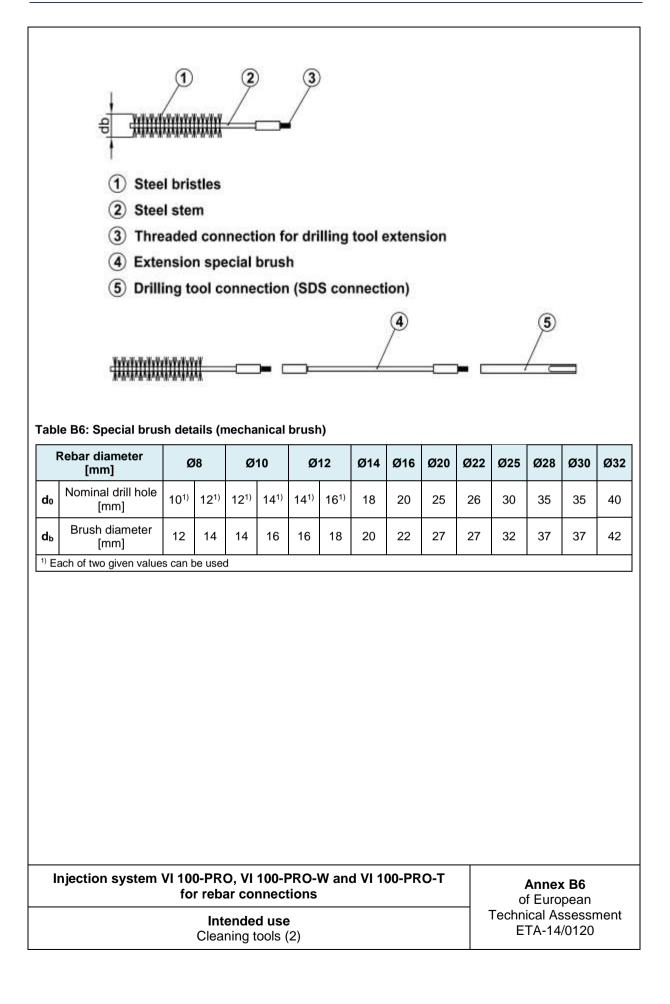
Minimum clear spacing between two post-installed rebar: a = 40 mm \ge 4 x Ø

Example of drilling aid

Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections


Annex B3 of European Technical Assessment ETA-14/0120

Intended use Installation parameters



VI 100-PRO (standard version)								
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]						
-5	65	780						
0	45	420						
+5	25	90						
+10	16	60						
+15	11,5	45						
+20	7,5	40						
+25	5	35						
+30	3	30						
+35	2	25						
+40	1	20						
VI 10	00-PRO-W (version for winter sea	ason)						
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]						
-5	40	210						
0	25	100						
+5	15	70						
+10	10	50						
+15	7	35						
+20	5	30						
VI 10	0-PRO-T (version for summer se	ason)						
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]						
+20	14	60						
+25	11	50						
+30	8	40						
+35	6	30						
+40	4	20						
temperature for installation +5°C. M curing time must be double.	the mixing to the time when the rebar i aximum mortar temperature for installa	tion +30°C. For wet condition the						

Installation with hollow drill bit (HDB)

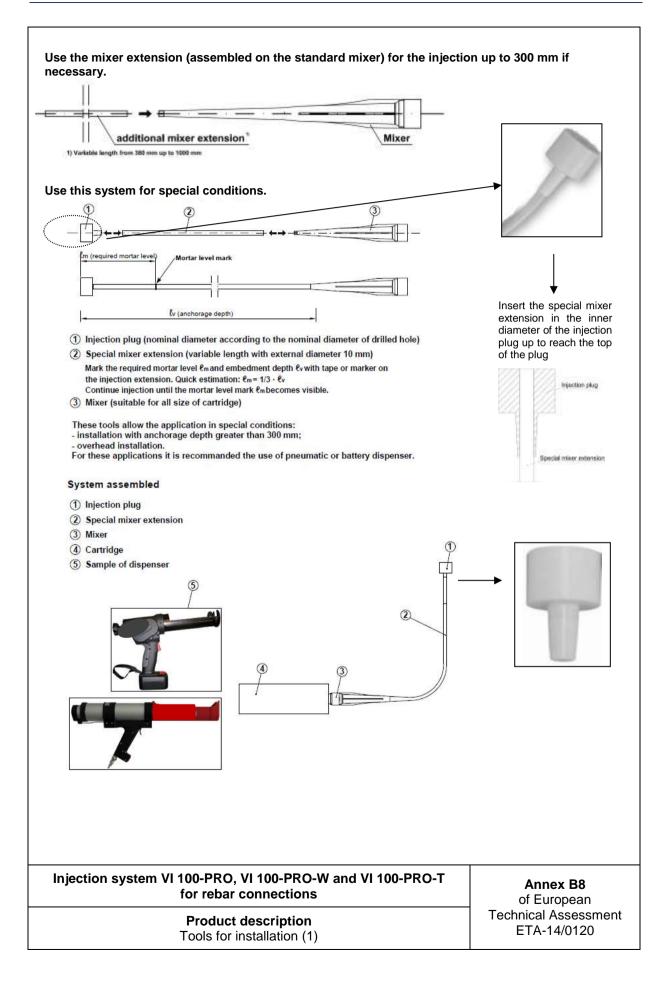
This drilling method is a hammer drilling method.

This drilling system removes the dust and cleans the bore hole during the drilling operation when used in accordance with the user's manual.

This drilling system include a vacuum cleaner. A suitable dust extraction system must be used. e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Switch-on the vacuum cleaner before to drill

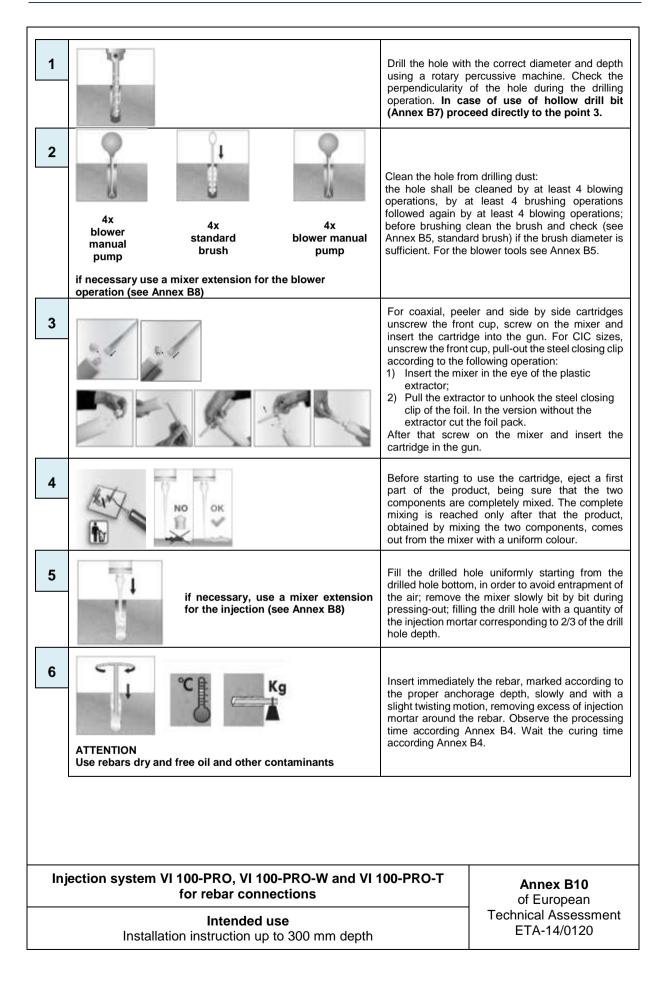
Table B7: HDB installation diameters

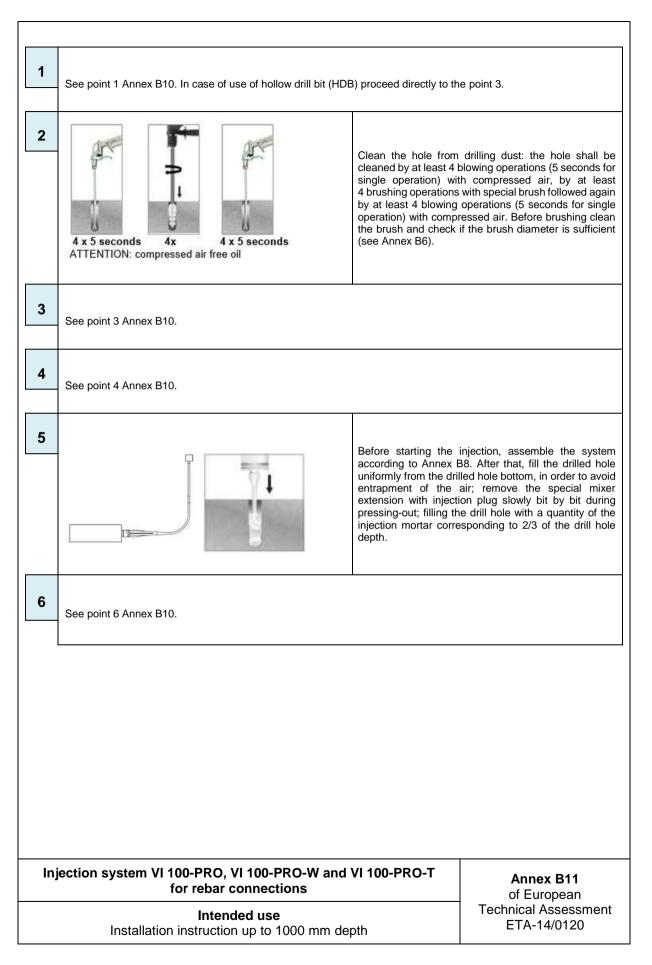

	Rebar diameter [mm]	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø30
d₀	Nominal drill hole [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35	35
¹⁾ Eac	h of two given values can be used									

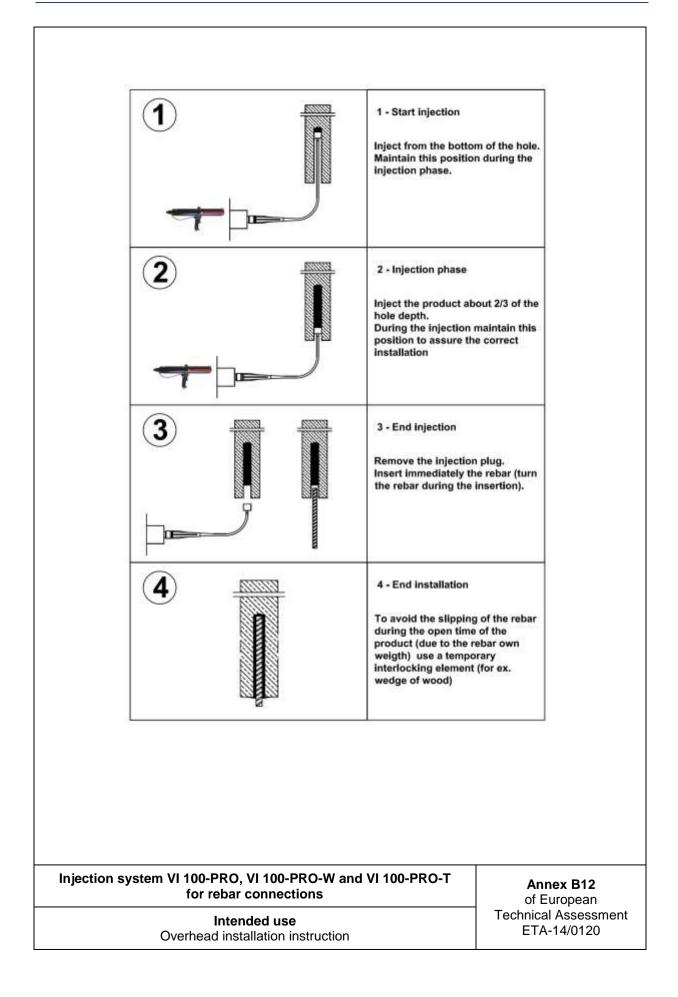
Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections

Annex B7 of European Technical Assessment ETA-14/0120

Intended use Hollow drill bit (HDB) specification




Pumps (injection dispensers)	Cartridges	Clean hole tools	Depth of the dri hole
Manual	420 ml 400 ml 380 ml	Blower pump or compressed air and standard brush or special brush or HDB	to 300 mm
Manual	345 ml 300 ml 280 ml 165 ml	Blower pump or compressed air and standard brush or special brush or HDB	to 300 mm
Manual	300 ml 280 ml 165 ml	Blower pump or compressed air and standard brush or special brush or HDB	to 300 mm
Pneumatic	825 ml Compressed air and special brush or HDB		300 mm to 1000 mm*
Pneumatic	Compressed air and special brush or HDB	300 mm to 1000 mm*	
Battery	420 ml 400 ml 380 ml 345 ml	Compressed air and special brush or HDB	300 mm to 1000 mm*
lote: use the mixer extension described in An	nex B8 for the injec	tion of the mortar	
ection system VI 100-PRO, VI 100- for rebar connec		100-PRO-T	Annex B9 of European
Intended use Tools for installation	Technical Assessr ETA-14/0120		



Page 19/23

Minimum anchorage length and minimum lap length under static loading

The minimum anchorage length $I_{b,min}$ and the minimum lap length $I_{0,min}$ according to EN 1992-1-1:2004+AC:2010 shall be multiplied by the relevant amplification factor $\alpha_{Ib,50y} = \alpha_{Ib,100y}$ given in Table C1. The design bond strength $f_{bd,PIR,50y} = f_{bd,PIR,100y}$ is given in Table C3. It is obtained by multiplying the bond strength f_{bd} according to EN 1992-1-1:2004+AC:2010 with the factor $k_{b,50y} = k_{b,100y}$ according to Table C2.

Table C1: Amplification factor $\alpha_{lb,50y} = \alpha_{lb,100y}$ related to the concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor $\alpha_{lb,50y} = \alpha_{lb,100y}$	
C12/15 to C50/60	Hammer drilling (HD), hollow drill bit (HDB) and compressed air drill (CA)	8 mm to 32 mm	1,0	

Table C2: Bond efficiency factor $k_{b,50y} = k_{b,100y}$ related to concrete class and drilling method for a working life of 50 and 100 years

k _{b,50v} = k _{b,100v} for perforation	Concrete class										
with hammer drill (HD), hollow drill bit (HDB) and compressed air drill (CA)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
Ø8 to Ø14	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00		
Ø16 to Ø20	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,93		
Ø22	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,92	0,93		
Ø24 to Ø25	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,92	0,86		
Ø28	1,00	1,00	1,00	1,00	1,00	1,00	0,91	0,84	0,79		
Ø30 to Ø32	1,00	1,00	1,00	1,00	0,89	0,80	0,73	0,67	0,63		

Table C3. Design values of $f_{bd,PIR,50y}$ ¹⁾ = $f_{bd,PIR,100y}$ according to EN 1992-1-1:2004+AC:2010 for hammer drilling (HD), hollow drill bit (HDB) and compressed air drill (CA) for a working life of 50 and 100 years

Design values of $f_{bd,PIR,50y} = f_{bd,PIR,100y}$ [N/mm ²]										
C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
1,60	2,00	2,30	2,70	3,00	3,40	3,70	4,00	4,30		
1,60	2,00	2,30	2,70	3,00	3,40	3,70	4,00	4,00		
1,60	2,00	2,30	2,70	3,00	3,40	3,70	3,70	4,00		
1,60	2,00	2,30	2,70	3,00	3,40	3,70	3,70	3,70		
1,60	2,00	2,30	2,70	3,00	3,40	3,40	3,40	3,40		
1,60	2,00	2,30	2,70	2,70	2,70	2,70	2,70	2,70		
	1,60 1,60 1,60 1,60 1,60	1,60 2,00 1,60 2,00 1,60 2,00 1,60 2,00 1,60 2,00 1,60 2,00	C12/15C16/20C20/251,602,002,301,602,002,301,602,002,301,602,002,301,602,002,301,602,002,30	C12/15C16/20C20/25C25/301,602,002,302,701,602,002,302,701,602,002,302,701,602,002,302,701,602,002,302,701,602,002,302,70	C12/15C16/20C20/25C25/30C30/371,602,002,302,703,001,602,002,302,703,001,602,002,302,703,001,602,002,302,703,001,602,002,302,703,001,602,002,302,703,00	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40 1,60 2,00 2,30 2,70 3,00 3,40	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,40	C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 1,60 2,00 2,30 2,70 3,00 3,40 3,70 4,00 1,60 2,00 2,30 2,70 3,00 3,40 3,70 4,00 1,60 2,00 2,30 2,70 3,00 3,40 3,70 4,00 1,60 2,00 2,30 2,70 3,00 3,40 3,70 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,70 3,70 1,60 2,00 2,30 2,70 3,00 3,40 3,40 3,40 1,60 2,00 2,30 2,70 3,00 3,40 3,40 3,40		

¹⁾ The values given are valid for good bond condition according to EN 1992-1-1:2004+AC:2010. For all other bond conditions multiply the values by 0,7.

Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections

Performances Design values of fbd,PIR,50y = fbd,PIR,100y Annex C1 of European Technical Assessment ETA-14/0120

Minimum anchor length and minimum lap length under seismic loading

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{o,min}$ according to EN 1992-1-1:2004+AC:2010 shall be multiplied by the relevant amplification factor $\alpha_{lb,seis,50y} = \alpha_{lb,seis,100y}$ given in Table C1. The design bond strength $f_{bd,seis,50y} = f_{bd,seis,100y}$ is given in Table C5. It is obtained by multiplying the bond strength $f_{bd,PIR}$ according to EN 1992-1-1:2004+AC:2010 with the factor $k_{b,seis,50y} = k_{b,seis,100y}$ according to Table C4. The minimum concrete cover according to Annex B3 and $c_{min,seis} = 2 \emptyset$ applies.

Table C4: Amplification factor $\alpha_{lb,seis,50y} = \alpha_{lb,seis,100y}$ related to the concrete class for a working life of 50 and 100 years

Concrete class Drilling method		Bar size	Amplification factor αlb,seis,50y = αlb,seis,100y			
C16/20 to C50/60	All drilling method	12 mm to 32 mm	1,0			

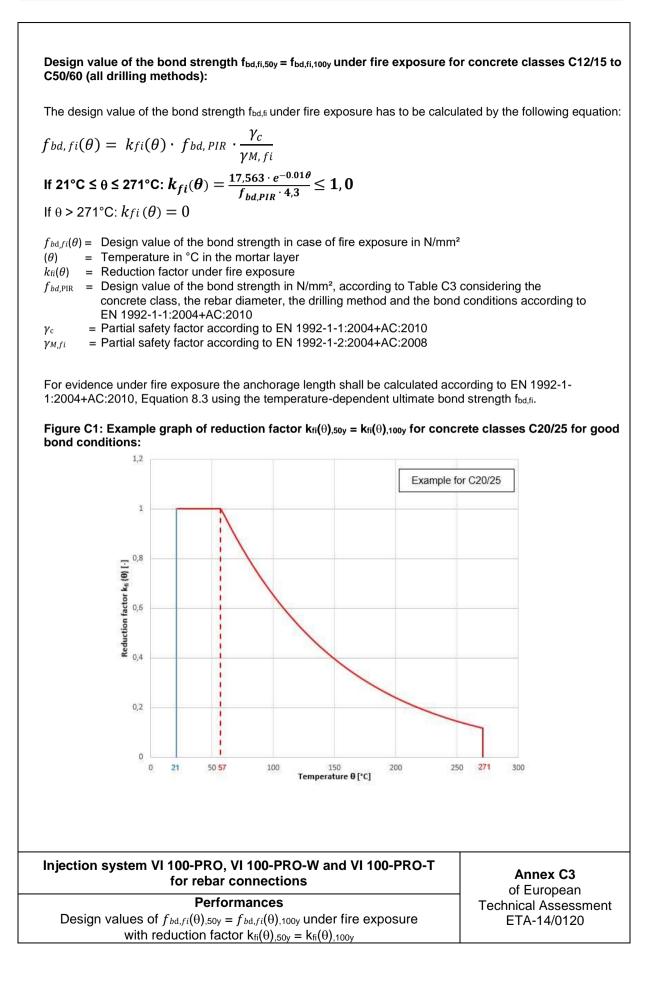
Table C5: Bond efficiency factor $k_{b,seis,50y} = k_{b,seis,100y}$ related to concrete class and drilling method for a working life of 50 and 100 years

k _{b,seis,50y} = k _{b,seis,100y} for perforation with	Concrete class								
hammer drill (HD), hollow drill bit (HDB) and compressed air drill (CA)	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Ø12 to Ø25	1,00	1,00	0,85	0,77	0,68	0,62	0,58	0,53	
Ø28 to Ø32	1,00	0,87	0,74	0,67	0,59	0,54	0,50	0,47	

Table C6: Design values of $f_{bd,PIR,seis,50y}^{1)} = f_{bd,PIR,seis,100y}$ for hammer drilling (HD), hollow drill bit (HDB) and compressed air drill (CA) for a working life of 50 and 100 years

Pohar diamatar [mm]	Design values of f _{bd,PIR,seis,50y} = f _{bd,PIR,seis,100y} [N/mn						m²]		
Rebar diameter [mm]	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
Ø12 to Ø25	2,00	2,30	2,30	2,30	2,30	2,30	2,30	2,30	
Ø28 to Ø32	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	

¹⁾ The values given are valid for good bond condition according to EN 1992-1-1:2004+AC:2010. For all other bond conditions multiply the values by 0,7.


Injection system VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T for rebar connections

Annex C2 of European Technical Assessment

ETA-14/0120

 $\label{eq:performances} \begin{array}{l} \textbf{Performances} \\ \textbf{Design values of } f_{bd,PIR,seis,50y} = f_{bd,PIR,seis,100y} \end{array}$

 Designated according to Article 29 of
 Regulation (EU) No 305/2011 and member of EOTA
 (European Organisation for Technical Assessment)

www.eota.eu

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment	Instytut Techniki Budowlanej
Trade name of the construction product	VI 100-PRO VI 100-PRO-W VI 100-PRO-T
Product family to which the construction product belongs	Bonded fasteners for use in concrete
Manufacturer	ALSAFIX S.A.S. 114a rue Principale 67240 Gries France
Manufacturing plant	ALSAFIX S.A.S. Manufacturing plant 1
This European Technical Assessment contains	32 pages including 3 Annexes which form an integral part of this Assessment
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	European Assessment Document (EAD) 330499-02-0601 "Bonded fasteners for use in concrete"
This version replaces	ETA-14/0119 issued on 07/10/2019

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

VI 100-PRO, VI 100-PRO-W and VI 100-PRO-T are bonded fasteners (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element: commercial threaded rod of the sizes M8 to M30 with hexagon nut and washer or reinforcing bar (rebar) Ø8 to Ø32 mm.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The steel element is anchored by the bond between steel element, mortar and concrete.

An illustration and the description of the products are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in clause 3 are only valid if the fasteners are used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the fastener of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load and shear load (static and quasi static loading), displacements	See Annex C1 to C7
Characteristic resistance for seismic performance category C1	See Annex C8
Characteristic resistance for seismic performance category C2	See Annex C9

3.1.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C10 to C12

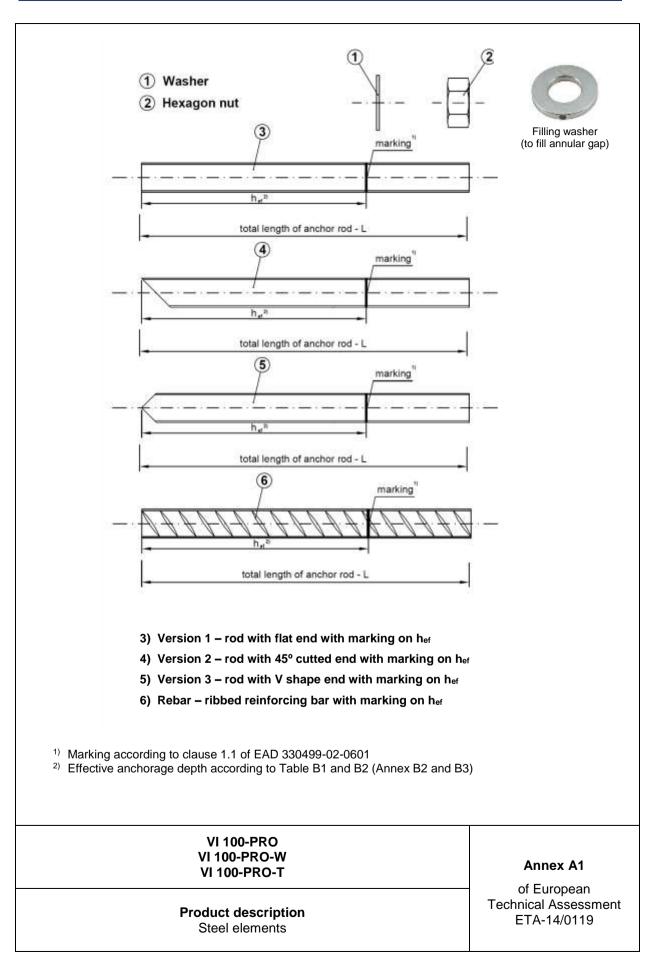
3.2 Methods used for the assessment

The assessment has been made in accordance with EAD 330499-02-0601.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to regulation (EU) No 305/2011).

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 08/08/2024 by Instytut Techniki Budowlanej

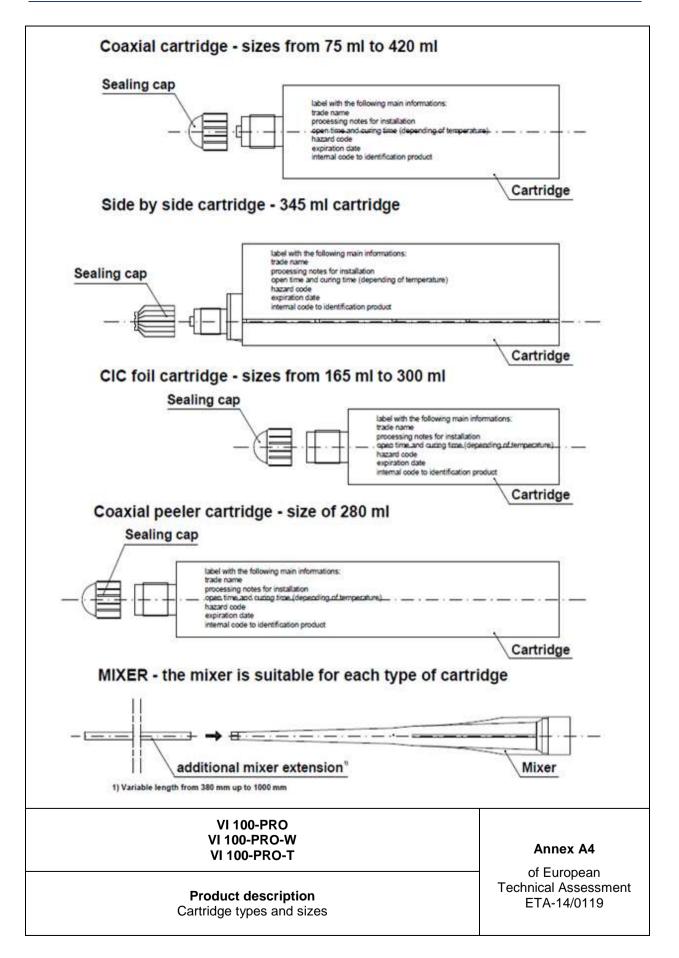
Anna Panek, MSc Deputy Director of ITB

Table A1: Threaded rods Designation Material Steel, zinc plated electroplated ≥ 5 µm acc. to EN ISO 4042 hot-dip galvanized ≥ 40 µm acc. to EN ISO 1461 Threaded rod Characteristic Characteristic Property Fracture steel yield steel ultimate class elongation strength strenath $A_5 > 8\%^{1)}$ f_{vk} ≥ 320 N/mm² 4.8 f_{uk} ≥ 400 N/mm² EN ISO 898-1 5.8 f_{vk} ≥ 400 N/mm² $A_5 > 8\%^{(1)}$ f_{uk} ≥ 500 N/mm² 8.8 $f_{yk} \ge 640 \text{ N/mm}^2$ A₅ ≥ 12%¹⁾ f_{uk} ≥ 800 N/mm² $A_5 > 9\%^{(1)}$ 10.9 $f_{yk} \ge 900 \text{ N/mm}^2$ f_{uk} ≥ 1000 N/mm² Hexagon nut 4 for class 4.8 rods 5 for class 5.8 rods EN 898-2 8 for class 8.8 rods 10 for class 10.9 rods Steel according to EN ISO 7089; corresponding to anchor rod material Washer Stainless steel A2 (Materials) 1.4301, 1.4307, 1.4567, 1.4541 **Stainless steel A4** (Materials) 1.4401, 1.4404, 1.4571, 1.4362, 1.4578 (Materials) 1.4529, 1.4565 High corrosion resistance stainless steel (HCR) Characteristic Threaded rod Characteristic Property Fracture steel yield steel ultimate class elongation strength strenath EN 10088 f_{yk} ≥ 210 N/mm² $A_5 > 8\%^{(1)}$ 50 $f_{uk} \ge 500 \text{ N/mm}^2$ EN ISO 3506 f_{vk} ≥ 450 N/mm² A₅ ≥ 12%¹⁾ 70 f_{uk} ≥ 700 N/mm² 80 $f_{yk} \ge 600 \text{ N/mm}^2$ A₅ ≥ 12%¹⁾ f_{uk} ≥ 800 N/mm² Hexagon nut 50 for class 50 rods EN 10088 70 for class 70 rods EN ISO 3506 80 for class 80 rods Washer Steel according to EN 10088; corresponding to anchor rod material ¹⁾ For seismic performance category C1 and C2, $A_5 > 19\%$ Commercial standard threaded rods may be used, with: material and mechanical properties according to Table A1, confirmation of material and mechanical properties by inspection certificate 3.1 according to EN 10204:2004, marking of the threaded rod with the embedment depth. Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States. **VI 100-PRO VI 100-PRO-W** Annex A2 **VI 100-PRO-T** of European **Technical Assessment Product description** ETA-14/0119 Materials (1)

Table A2: Reinforcing bars (Rebar)

I	Designation	Material
	Rebar according to EN 1992-1-1:2004+AC:2010	Bars and de-coiled rods Class B or C with f_{yk} and k according to EN 1992-1-1:2004+AC:2010 $f_{uk} = f_{tk} = k \cdot f_{yk}$ Rib height of the bar (h) in the range 0,05d ≤ h ≤ 0,07d

Table A3: Injection mortars


Product	Composition
VI 100-PRO VI 100-PRO-W VI 100-PRO-T (two component injection mortars)	Additive: quartz Bonding agent: vinyl ester resin styrene free Hardener: dibenzoyl peroxide

VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Product description Materials (2) Annex A3

of European Technical Assessment ETA-14/0119

Specifications of intended use

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M30 and from Ø8 to Ø32.
- Seismic performance category C1: sizes from M12 to M20, rods with f_{uk} ≤ 800 N/mm² and fracture elongation A₅ ≥ 19%.
- Seismic performance category C2: sizes M12 and M16, rods with $f_{uk} \le 800 \text{ N/mm}^2$ and fracture elongation $A_5 \ge 19\%$.
- Fire exposure: sizes from M10 to M20, steel class 5.8 to 8.8 and stainless steel A4.

Working life:

Working life of the bonded fasteners of 50 and/or 100 years.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Uncracked concrete: sizes from M8 to M30 and from Ø8 to Ø32.
- Cracked concrete: sizes from M10 to M20.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C).

Use conditions (environmental conditions):

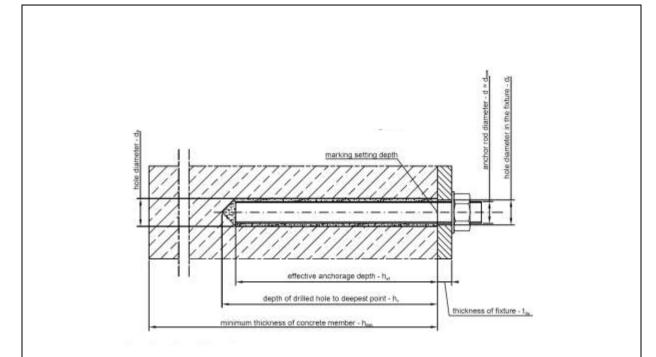
- Structures subject to dry internal conditions: all materials according to Table A1 and A2.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - stainless steel A2 according to Annex A2, Table A1 CRC II,
 - stainless steel A4 according to Annex A2, Table A1 CRC III,
 - high corrosion resistance steel (HCR) according to Annex A2, Table A1 CRC V.

Installation:

- Dry or wet concrete (use category I1): sizes from M8 to M30 and from Ø8 to Ø32.
- Flooded holes with the exception of seawater (use category l2): sizes from M8 to M30 and from Ø8 to Ø32.
- Installation direction D3 (downward and horizontal and upwards installation): sizes from M8 to M30 and from Ø8 to Ø32.
- The anchors are suitable for hammer drilled holes (HD), for hollow drill bit (HDB) and for compressed air drill (CA): sizes from M8 to M30 and from Ø8 to Ø32.

Design methods:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static loads are designed according to EN 1992-4 and EOTA Technical Report TR 055.
- Anchorages under seismic actions are designed according to EN 1992-4.
- Anchorages under fire exposure are designed according to EOTA Technical Report TR 082.


VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Intended use Specifications

Annex B1

of European Technical Assessment ETA-14/0119

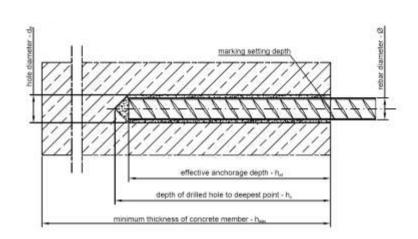


Table B1: Installation data for threaded rods

Size		M8	M10	M12	M16	M20	M24	M27	M30	
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	22 ¹⁾ 24 ¹⁾	28	30	35	
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14	18	22	26	30	33	
Effective embedment	h _{ef,min} [mm]	60	70	80	100	120	145	145	145	
depth	h _{ef,max} [mm]	160	200	240	320	400	480	540	600	
Depth of the drilling hole	h₁ [mm]				h _{ef} +	5 mm				
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3	0 mm; ≥ 1	00 mm			h _{ef} + 2d ₀			
Maximum setting torque moment	T _{fix} [N·m]	10	20	40	80	130	200	250	280	
Thickness to be fixed	t _{fix,min} [mm]	> 0								
Thickness to be liked	t _{fix,max} [mm]	< 1500								
Minimum spacing	s _{min} [mm]	40	50	60	75	90	115	120	140	
Minimum edge distance	c _{min} [mm]	35	40	45	50	55	60	75	80	
¹⁾ Each of two given value	s can be used									
VI 100-PRO VI 100-PRO-W VI 100-PRO-T							-	Annex B2	_	
Intended use Installation data for threaded rods							Technic	cal Asses A-14/01	ssment	

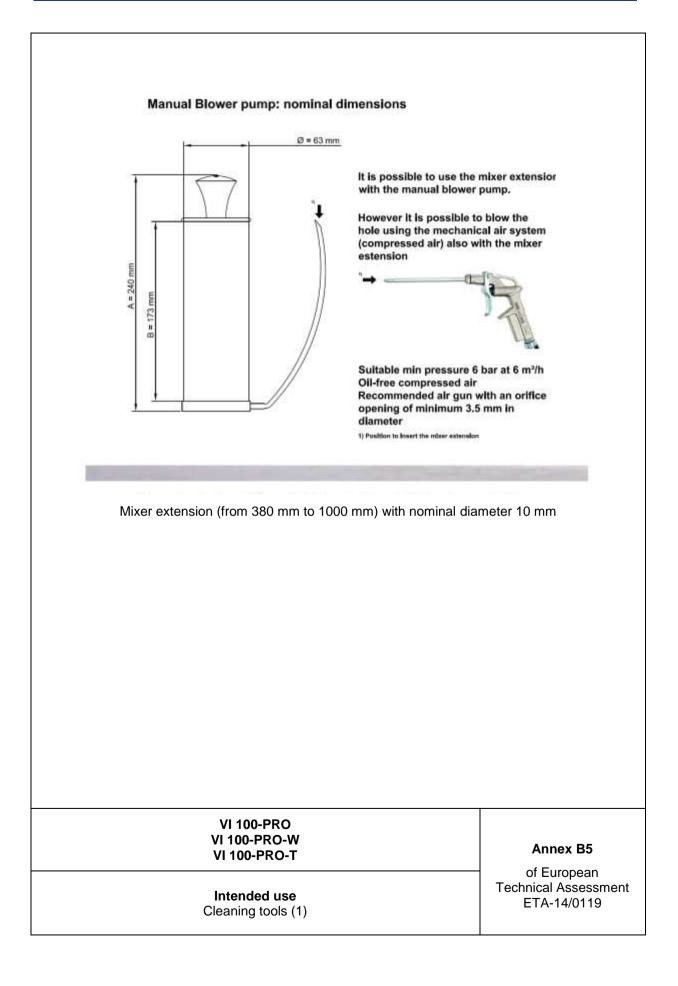
Table B2: Installation data for rebars

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Nominal drilling diameter	d₀ [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35	40
Effective embedment depth	h _{ef,min} [mm]	60	70	80	80	100	120	150	180	200
	h _{ef,max} [mm]	160	200	240	280	320	400	500	560	640
Depth of the drilling hole	h₁[mm]	h _{ef} + 5 mm								
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30 mm; ≥ 100 mm		h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	75	75	90	115	120	140
Minimum edge distance	c _{min} [mm]	35	40	45	50	50	55	60	75	80
¹⁾ Each of two given valu	ues can be used									

VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Intended use Installation data for rebars

Annex B3


of European Technical Assessment ETA-14/0119

	VI 100-PRO				
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]			
-10	105	1440			
-5	65	840			
0	45	420			
+5	25	90			
+10	16	60			
+15	11,5	45			
+20	7,5	40			
+25	5	35			
+30	3	30			
+35	2	25			
+40	1	20			
	VI 100-PRO-W				
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]			
-20	120	2880			
-15	90	1500			
-10	60	900			
-5	40	210			
0	25	100			
+5	15	70			
+10	10	50			
+15	7	35			
+20	5	30			
	VI 100-PRO-T				
Concrete temperature [C°]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]			
+20	14	60			
+25	11	50			
+30	8	40			
+35	6	30			
+40	4	20			
is longer). Cartridge temperature where the concrete temperature is	of the mixing to the time when the anchor from +5°C to +30°C. Minimum cartridge t s below 0°C. es, the curing time must be double.	may be torque or loaded (whichever emperature of +15°C for application			
VI 1	100-PRO 00-PRO-W 100-PRO-T	Annex B4			
Inte Maximum processing	of European Technical Assessr ETA-14/0119				

Table B3: Maximum processing time and minimum curing time

Table B4: Standard brush diameter for threaded rods

Threaded rod diameter		M8	M10	M12	M16	M20	M24	M27	M30
d₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35
d _b	Brush diameter [mm]	12	14	16	20	26	30	35	37

Table B5: Standard brush diameter for rebar

	Rebar diameter		Ø8		10	Ø	12	Ø14	
d₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18	
d _b	Brush diameter [mm]	12	14	14	16	16	18	20	
1) Each after store under any her und									

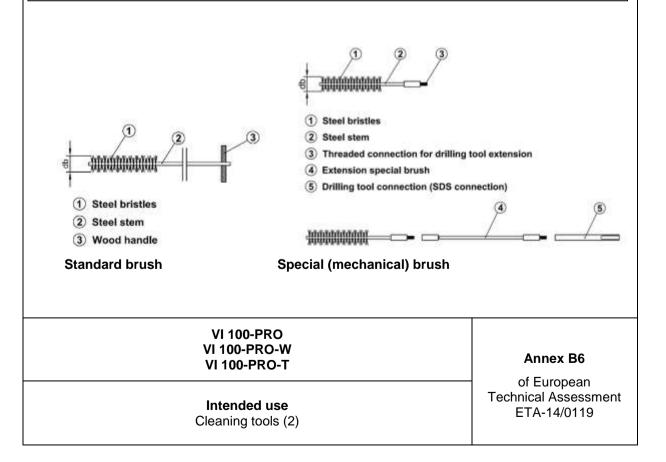
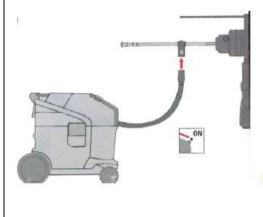

1) Each of two given values can be used

Table B6: Special brush diameter (mechanical brush) for threaded rods

Т	readed rod diameter M16		M20	M24	M27	M30
d₀	Nominal drill hole [mm]	18	24	28	30	35
d _b	Brush diameter [mm]	20	26	30	32	37

Table B7: Special brush diameter (mechanical brush) for rebar

TI	Threaded rod diameter d₀ Nominal drill hole [mm]		8	Ø	10	Ø	12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
d₀	Nominal drill hole [mm]	10 ¹⁾	12 ¹⁾	12 ¹⁾	14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	30	35	40
d _b	Brush diameter [mm]	12	14	14	16	16	18	20	22	27	32	37	42
¹⁾ Each of	¹⁾ Fach of two given values can be used												



Hollow Drill Bit (HDB)

This drilling method is a hammer drilling method.

This drilling system removes the dust and cleans the bore hole during the drilling operation when used in accordance with the user's manual.

This drilling system include a vacuum cleaner. A suitable dust extraction system must be used. e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data.

Switch-on the vacuum cleaner before to drill

Table B8: HDB perforation diameter for threaded rods

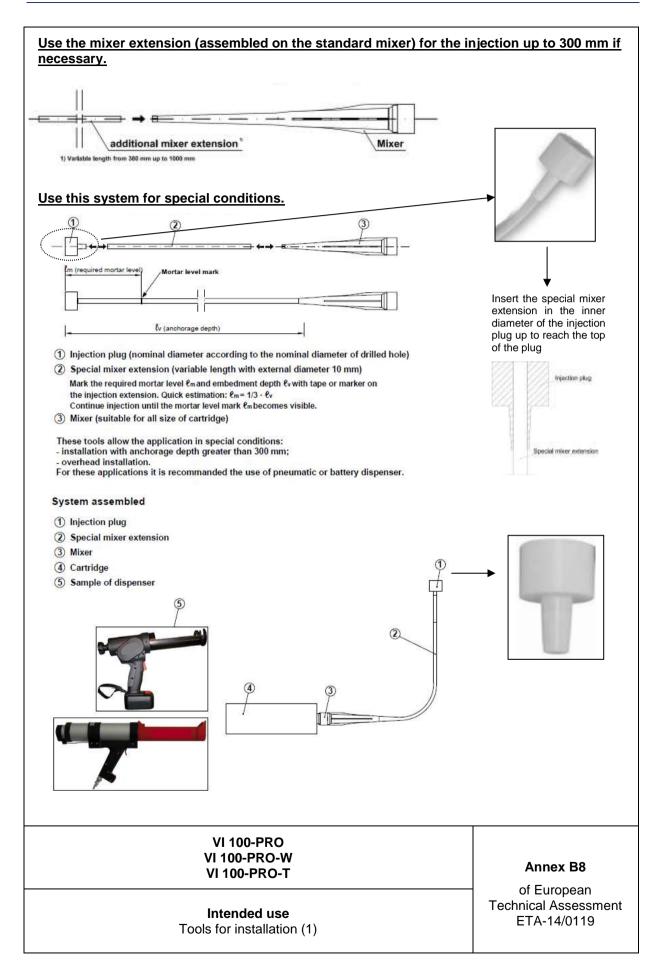
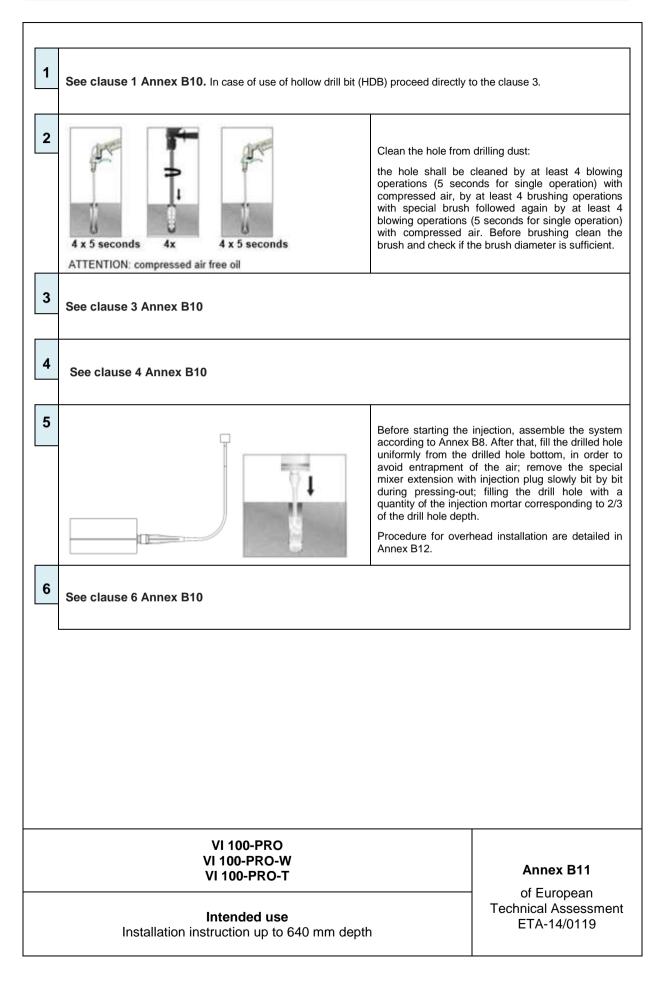

-	Threaded rod diameter	M8	M10	M12	M16	M20	M24	M27	M30
d₀	Nominal drill hole [mm]	10	12	14	18	24	28	30	35

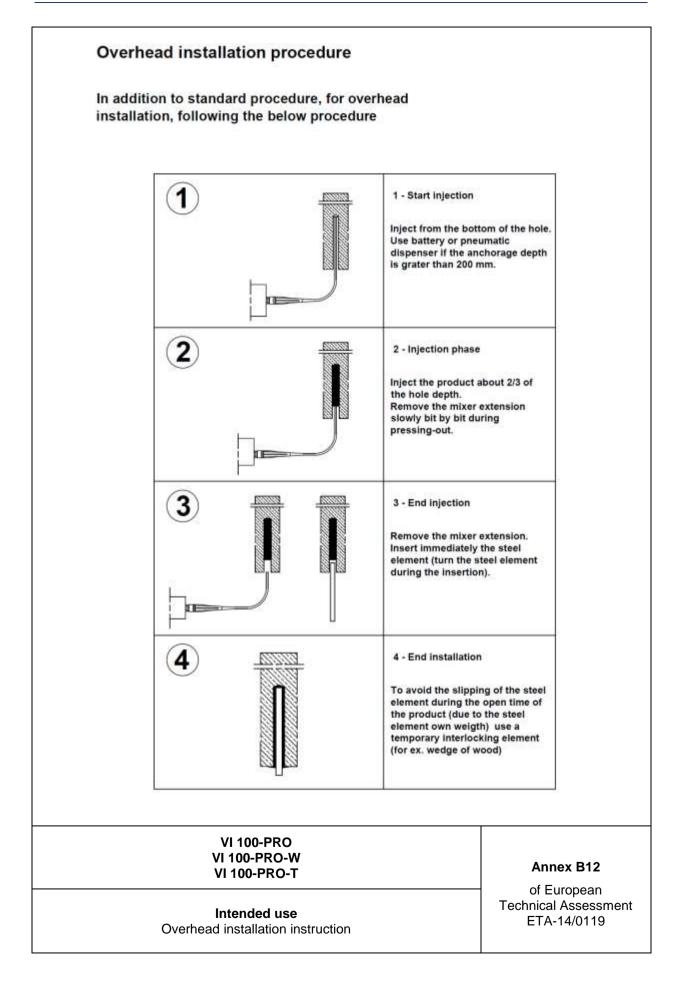
Table B9: HDB perforation diameter for rebar

	Rebar diameter	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28		
d₀	Nominal drill hole [mm]	10 ¹⁾ 12 ¹⁾	12 ¹⁾ 14 ¹⁾	14 ¹⁾ 16 ¹⁾	18	20	25	30	35		
¹⁾ Each of	two given values can be used										
	VI										
	VI 1 VI 1		Annex	B7							
								of European			

Intended use Hollow drill bit (HDB) specification Technical Assessment ETA-14/0119



Pumps (injection dispensers)	Cartridges	Types
Manual	420 ml 400 ml 380 ml	Manual (up to 300 mm anchorage depth
Manual	345 ml 300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth
Manual	300 ml 280 ml 165 ml	Manual (up to 300 mm anchorage depth
	825 ml	Pneumatic (up to 640 mm anchorage depth
Pneumatic	420 ml 400 ml 380 ml	Pneumatic (up to 640 mm anchorage depth
Battery	420 ml 400 ml 380 ml 345 ml 300 ml	Battery (up to 640 mm anchorage depth
VI 100-PRO VI 100-PRO-W VI 100-PRO-W VI 100-PRO-T		Annex
Intended use Tools for installation (2)		of Europ Technical As ETA-14/



1	j	Drill the hole with the correct diameter and depth using a rotary percussive machine. Check the perpendicularity of the hole during the drilling operation. In case of use of hollow drill bit (Annex B7) proceed directly to the clause 3.				
	4x4x4x4x4x4xblower manual pumpstandard brushblower manual pumpf necessary use a mixer extension peration (see Annex B5)for the blower	Clean the hole from drilling dust: the hole shall be cleaned by at least 4 blowing operations, by at least 4 brushing operations followed again by at least 4 blowing operations; before brushing clean the brush and check (see Annex B6, standard brush) if the brush diameter is sufficient. For the blower tools see Annex B5.				
3		 For coaxial, peeler and side by side cartridges unscrew the front cup, screw on the mixer and insert the cartridge into the gun. For CIC sizes, unscrew the front cup, pull-out the steel closing clip according to the following operation: 1) Insert the mixer in the eye of the plastic extractor; 2) Pull the extractor to unhook the steel closing clip of the foil. In the version without the extractor cut the foil pack. After that screw on the mixer and insert the cartridge in the gun. 				
4	NO OK	Before starting to use the cartridge, eject a first part of the product, being sure that the two components are completely mixed. The complete mixing is reached only after that the product, obtained by mixing the two components, comes out from the mixer with a uniform colour.				
5	if necessary, use a mixer extension for the injection (see Annex B8)	Fill the drilled hole uniformly starting from the drilled hole bottom, in order to avoid entrapment of the air; remove the mixer slowly bit by bit during pressing-out; filling the drill hole with a quantity of the injection mortar corresponding to 2/3 of the drill hole depth.				
	ATTENTION: Steel elements dry and free oil and other contaminants	Insert immediately the steel element (threaded rod or rebar), marked according to the proper anchorage depth, slowly and with a slight twisting motion, removing excess of injection mortar around the steel element. Observe the processing time according Annex B4. Wait the curing time according Annex B4.				
	VI 100-PRO VI 100-PRO-W VI 100-PRO-T	Annex B10 of European				
	Intended use Installation instruction up to 300 mm depth	Technical Assessment ETA-14/0119				

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure – characteristic tension res	istance									
Steel class 4.8	N _{Rk.s}	[kN]	15	23	34	63	98	141	183	224
Steel class 5.8	N _{Rk.s}	[kN]	18	29	42	78	122	176	229	280
Steel class 8.8	N _{Rk.s}	[kN]	29	46	67	126	196	282	367	449
Steel class 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Stainless steel A2, A4, HCR class 50	N _{Rk,s}	[kN]	18	29	42	78	122	176	229	280
Stainless steel A2, A4, HCR class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	321	392
Stainless steel A4, HCR class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Steel failure - characteristic tension res		artial fac	tor			I	I			
Steel class 4.8	γ _{Ms,N} ¹⁾	[-]				1,	50			
Steel class 5.8	γ _{Ms,N} ¹⁾	[-]				1,	50			
Steel class 8.8	γ _{Ms,N} ¹⁾	[-]				1,	50			
Steel class 10.9	γ _{Ms,N} ¹⁾	[-]				1,	40			
Stainless steel A2, A4, HCR class 50	γ _{Ms,N} ¹⁾	[-]				2,	86			
Stainless steel A2, A4, HCR class 70	γ _{Ms,N} ¹⁾	[-]				1,	87			
Stainless steel A4, HCR class 80	γ _{Ms,N} ¹⁾	[-]					60			
Steel failure - characteristic shear resis			arm			,				
Steel class 4.8	V ⁰ _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Steel class 5.8	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140
Steel class 8.8	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel class 10.9	V ⁰ _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Stainless steel A2, A4, HCR class 50	V ⁰ _{Rk,s}	[kN]	9	14	21	39	61	88	115	140
Stainless steel A2, A4, HCR class 70	V ⁰ _{Rk,s}	[kN]	13	20	29	55	86	124	160	196
Stainless steel A4, HCR class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel failure - characteristic shear resis			n		1					
Steel class 4.8	M ⁰ _{Rk.s}	[Nm]	15	30	52	133	260	449	666	900
Steel class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	832	1125
Steel class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1331	1799
Steel class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123	1664	2249
Stainless steel A2, A4, HCR class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	166	324	561	832	1124
Stainless steel A2, A4, HCR class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1165	1574
Stainless steel A4, HCR class 80	M ⁰ _{Rk.s}	[Nm]	30	60	105	266	519	898	1331	1799
Steel failure - characteristic shear resis	1.	tial facto	or		1					
Steel class 4.8	γ _{Ms,V} ¹⁾	[-]				1.	25			
Steel class 5.8	γ _{Ms,V} ¹⁾	[-]					25			
Steel class 8.8	γ _{Ms,V} ¹⁾	[-]					25			
Steel class 10.9	γ _{Ms,V} ¹⁾	[-]				,	50			
Stainless steel A2, A4, HCR class 50	γ _{Ms,V} ¹⁾	[-]					38			
Stainless steel A2, A4, HCR class 70	γ _{Ms,V} ¹⁾	[-]					56			
Stainless steel A4, HCR class 80	γ _{Ms,V} ¹⁾	[-]					33			
,			1			.,				
¹⁾ In the absence of other national regulatio Fracture elongation threaded rod for sei Steel classes 10.9 are not covered for se	smic catego		ind C2 n	nust be A	հ₅ ≥ 19%.					
v	VI 100-PF I 100-PRC /I 100-PRC	D-W							nnex C	
-	Performances Characteristic values for steel: tension and shear resistance – threaded rods						۲ ۱	of European Technical Assessmer ETA-14/0119		

Table C2: Characteristic values for tension resistance in uncracked concrete under static and quasi-static loads - threaded rods. Working life of 50 and 100 years. Size M8 M10 M12 M16 M20 M24 M27 M30 Steel failure Characteristic resistance N_{Rk.s} [kN] See Annex C1 – Table C1 Partial factor $\gamma_{\text{Ms,N}}$ 1) See Annex C1 – Table C1 [-] Combined pull-out and concrete cone failure in uncracked concrete C20/25 Characteristic bond resistance $\tau_{\rm Rk, ucr, 50}$ [N/mm²] 16.0 12,0 12,0 12,0 9,5 8.0 8.0 9,5 temperature range -40°C / +40°C $\tau_{Rk,ucr,100}$ Characteristic bond resistance $\tau_{\text{Rk,ucr,50}}$ [N/mm²] 11,0 8,5 8,5 8,5 7,0 7,0 6,0 6,0 temperature range -40°C / +80°C $\tau_{Rk,ucr,100}$ Characteristic bond resistance $\tau_{\text{Rk,ucr,50}}$ [N/mm²] 6.0 4,5 4.5 4.5 4,0 4,0 3.0 3.0 temperature range -40°C / +120°C τ_{Rk,ucr,100} $(\frac{f_{ck}}{20})^{0.3}$ Increasing factor [-] Ψc Sustained load factor for 0,72 temperature range -40°C / +40°C $\psi^0{}_{\text{sus}}$ Sustained load factor for 0,74 [-] temperature range -40°C / +80°C $\psi^0_{\text{ sus, 100}}$ Sustained load factor for 0.75 temperature range -40°C / +120°C Concrete cone failure Factor for uncracked concrete k_{ucr,N} [-] 11,0 Edge distance 1,5 h_{ef} C_{cr,N} [mm] Spacing 3,0 h_{ef} [mm] S_{cr,N} Splitting failure $\text{if } h = h_{\min}$ 2,5 · h_{ef} 2,0 · h_{ef} 1,5 · h_{ef} If $h_{min} < h < 2 \cdot h_{min}$ Edge distance [mm] 2602 Ccr.Nsp hmin C_{ct No} Contract interpolate values if $h \ge 2 \cdot h_{min}$ $C_{\text{cr},\text{Np}}$ Spacing Scr,Nsp [mm] 2 · C_{cr,sp} Installation factor for combined pull-out, concrete cone and splitting failure Installation factor for category I1¹⁾ 1.0 [-] γinst Installation factor for category I2¹⁾ 1,2 ¹⁾ In the absence of other national regulation **VI 100-PRO VI 100-PRO-W** Annex C2 **VI 100-PRO-T** of European **Technical Assessment** Performances ETA-14/0119 Characteristic values for tension resistance in uncracked concrete under static and quasi-static loads - threaded rods

Table C3: Characteristic values for tension resistance in cracked concrete under static and quasi-static loads – threaded rods. Working life of 50 and 100 years.

Size			M10	M12	M16	M20		
Steel failure	T	T						
Characteristic resistance	N _{Rk,s}	[kN]		See Annex	C1 – Table C1			
Partial factor	γ _{Ms,N} ¹⁾	[-]		See Annex	C1 – Table C1			
Combined pull-out and concrete con	e failure in cracked	concrete C20/	25					
Characteristic bond resistance	I failure I failure racteristic resistance N _{BL.4} [kN] See Annex C1 – Table C1 al factor $\gamma_{Me.N}^{-1}$ [·] See Annex C1 – Table C1 bilined pull-out and concrete cone failure in cracked concrete C20/25 Tacteristic bond resistance Tex.or.so reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 9,0 9,0 9,0 reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 6,5 6,5 6,5 reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 3,5 3,5 3,5 reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 8,5 8,6 8,0 reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 8,5 8,0 reacteristic bond resistance reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 8,0 8,5 8,0 reacteristic bond resistance reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 3,0 3,0 3,0 3,0 reacteristic bond resistance $\nabla_{Re.x.so}$ $[N/mm^2]$ 3,0 3,0 3,0 3,0		6,5					
	¢RK,CF,50	[[0]]	5,0	0,0	0,0	0,0		
temperature range -40°C / +80°C	τ _{Rk,cr,50}	[N/mm ²]	6,5	6,5	6,5	4,5		
	τ _{Rk,cr,50}	[N/mm ²]	3,5	3,5	3,5	2,5		
Characteristic bond resistance		FN 1/ 21	0.5	0.5				
temperature range -40°C / +40°C	τ _{Rk,cr,100}	[N/mm²]	8,5	8,5	8,0	5,5		
Characteristic bond resistance temperature range -40°C / +80°C	TRk,cr,100	[N/mm ²]	6,0	6,0	5,5	4,0		
Characteristic bond resistance	TRk or 100	[N/mm ²]	3.0	3.0	3.0	2,0		
temperature range -40°C / +120°C	-116,01,100	· · · · · · · · · ·	-,-	-,-	-,-	_,•		
Increasing factor	Ψc	[-]		$\left(\frac{f}{2}\right)$	$(\frac{ck}{c})^{0.3}$			
Sustained load factor for				_	-			
temperature range -40°C / +40°C				(),72			
Sustained load factor for		[-]		ſ).74			
temperature range -40°C / +80°C	Ψ^0 sus,100	L 1		(·,· ·			
				(),75			
Concrete cone failure								
Factor for cracked concrete	k _{er N}	[-]			7.7			
Edge distance			-					
Spacing			1,5 h _{ef} 3,0 h _{ef}					
Splitting failure	-co,N	[]						
				if h	= h _{min}			
			2,5 · h _{ef}			1,5 · h _{ef}		
Edge distance	C _{cr,Nsp}	[mm]		2 x h _{min}				
				Dmin	Calls Calle			
					ate values			
		_						
Spacing				2 ·	C _{cr,sp}			
	out, concrete cone	and splitting fa	ailure					
Installation factor for category I1 ¹⁾	A/.	r_1			1,0			
Installation factor for category I2 ¹⁾	∛inst	[-]			1,2			
¹⁾ In the absence of other national requi	ation	, I						
" In the absence of other national regu	ation							
					Anne	x C3		
	VI IUU-FRU-I				<u>م</u> ۲ ۲			
	Performances							
					i ecnnical A	ssessmen		
Characteristic values for tonsi	on resistance in	cracked con	crete under	static				

Table C4: Characteristic values for shear resistance in uncracked and cracked concrete under static and quasi-static loads - threaded rods. Working life of 50 and 100 years. Size M10 M12 M30 **M**8 M16 M20 M24 M27 Steel failure without lever arm Characteristic resistance $V^0_{Rk,s}$ [kN] See Annex C1 – Table C1 γ_{Ms,V} ¹⁾ Partial factor See Annex C1 – Table C1 [-] Ductility factor [-] k7 1.0 Steel failure with lever arm Characteristic resistance [kN] See Annex C1 – Table C1 M⁰_{Rk,s} Partial factor $\gamma_{\text{Ms,V}}$ 1) See Annex C1 – Table C1 [-] Concrete pry out failure Factor k_8 [-] 2,0 Installation factor [-] 1,0 γ_{inst} Concrete edge failure $I_f = h_{ef}$ and Effective length of anchor ≤ max lf [-] $l_f = h_{ef} \text{ and } \leq 12 \ d_{nom}$ under shear loading (8 d_{nom;}; 300 mm) Installation factor [-] 1,0 γinst ¹⁾ In the absence of other national regulation **VI 100-PRO VI 100-PRO-W** Annex C4 **VI 100-PRO-T** of European Performances **Technical Assessment** ETA-14/0119 Characteristic values for shear resistance in uncracked and cracked concrete under static and quasi-static loads - threaded rods

Table C5: Characteristic values for tension resistance in uncracked concrete under static and quasistatic loads – rebar. Working life of 50 and 100 years.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure											
Characteristic resistance	N _{Rk,s}	[kN]					A _s x f _{uk} ²⁾)			
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γ _{Ms,N} ¹⁾	[-]					1,4				
Combined pull-out and concrete cone f			ete C20/	25			1,-1				
Characteristic bond resistance	τ _{Rk,ucr,50}		1								
temperature range -40°C / +40°C	τ _{Rk,ucr,100}	[N/mm ²]	14,0	13,0	13,0	12,0	10,0	9,5	9,5	8,5	7,5
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	10,0	9,5	9,0	9,0	7,5	7,0	7,0	6,0	5,5
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,ucr,50} τ _{Rk,ucr,100}	[N/mm ²]	5,5	5,0	5,0	5,0	4,0	4,0	4,0	3,5	3,0
Increasing factor	Ψc	[-]					$(\frac{f_{ck}}{20})^{0.3}$				
Sustained load factor for temperature range -40°C / +40°C							0,72				
Sustained load factor for temperature range -40°C / +80°C Sustained load factor for	Ψ^0_{sus} $\Psi^0_{sus,100}$	[-]					0,74 0,75				
temperature range -40°C / +120°C Concrete cone failure		L					-,. 0				
Factor for uncracked concrete	k _{ucr,N}	[-]					11,0				
Edge distance	C _{cr,N}	[mm]					1,5 h _{ef}				
Spacing	S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure							,				
Edge distance	C _{cr,Nsp}	[mm]			:	^{2 a h} wn h _{min}	< h < 2 r_{GNS} polate va $h \ge 2 \cdot h_{I}$ $C_{cr,Np}$	c _{ense} alues			
Spacing	S _{cr,Nsp}	[mm]					$2 \cdot C_{cr,sp}$				
Installation factor for combined pull-out			tina failı	ire			or, ap				
Installation factor for category I1 ¹⁾		ile und opin					1.0				
	γinst	[-]					1,0				
Installation factor for category I2 ¹⁾ ¹⁾ In the absence of other national regulation ²⁾ f _{uk} shall be taken from the specifications	on of reinforcing b	pars					1,2				
F	VI 100-PRC /I 100-PRO- /I 100-PRO- Performance	W -T es						Annex C5 of European Technical Assessment			
Characteristic values for tension re quasi-	sistance in u static loads		concre	ete uno	der sta	atic an	d	E	TA-14	1/0119	

Table C6: Characteristic values for shear resistance in uncracked concrete under static and quasi-static loads – rebar. Working life of 50 and 100 years.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Steel failure without lever arm			1				1	1	1		1
Characteristic resistance	V ⁰ _{Rk,s}	[kN]				0,5	5 x A _s x f _u	2) Jk			
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Cross section area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Ductility factor	k ₇	[-]					1,0				
Steel failure with lever arm		•									
Characteristic resistance	M ⁰ _{Rk,s}	[kN]				1,2	x W _{el} x f	: 2) uk			
Elastic section modulus	W _{el}	[mm ³]	50	98	170	269	402	785	1534	2155	3217
Partial factor	γ _{Ms,V} 1)	[-]					1,5				
Concrete pry out failure		•									
Factor	k ₈	[-]					2,0				
Installation factor	γinst	[-]					1,0				
Concrete edge failure											
Effective length of anchor under shear loading	l _f	[-]		۱ _f	= h _{ef} and	$l \le 12 d_{nc}$	m		≤n	= h _{ef} and nax (8 d _n 300 mm)	om;
Installation factor	γinst	[-]					1,0				
$^{1)}$ In the absence of other national regulatio $^{2)}$ f_{uk} shall be taken from the specifications of		1	1								

VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Performances

Characteristic values for shear resistance in uncracked concrete under static and quasi-static loads – rebar

Annex C6

Table C7. Displacement under tension loads for uncracked concrete under static and quasi-static loads – threaded rods.

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in uncracked concrete C20/25 to C50/60 under tension loads										
Service load ¹⁾	F	[kN]	9,6	10,8	14,3	23,8	29,6	42,4	40,4	44,4
Displacement	δ_{N0}	[mm]	0,30	0,30	0,35	0,35	0,35	0,40	0,40	0,45
Displacement	δ _{N∞}	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C8: Displacement under tension loads for cracked concrete under static and quasi-static loads – threaded rods.

Size	Size			M12	M16	M20		
Characteristic displacement in cracked concrete C20/25 to C50/60 under tension loads								
Service load 1)	F	[kN]	9,5	14,3	21,4	23,8		
Displacement	δ_{N0}	[mm]	0,50	0,50	0,70	0,60		
Displacement	δ _{N∞}	[mm]	0,85	0,85	0,85	0,85		

Table C9: Displacement under shear loads for uncracked and cracked concrete under static and quasistatic loads – threaded rods.

Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic displacement in cracked and uncracked concrete C20/25 to C50/60 under shear loads										
Service load 1)	F	[kN]	3,7	5,8	8,4	15,7	24,5	35,3	45,5	55,6
Displacement	δ_{V0}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Displacement	δ_{V^∞}	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

Table C10: Displacement under tension loads for uncracked concrete under static and quasi-static loads – rebar.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacement in uncracked concrete C20/25 to C50/60 under tension loads											
Service load 1)	F	[kN]	10,1	13,6	17,2	20,1	23,9	41,2	53,3	64,1	67,3
Displacement	δ_{N0}	[mm]	0,33	0,33	0,40	0,41	0,42	0,45	0,45	0,47	0,48
	δ_{N^∞}	[mm]	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Table C11: Displacement under shear loads for uncracked concrete under static and quasi-static loads – rebar.

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Characteristic displacement in uncracked concrete C20/25 to C50/60 under shear loads											
Service load 1)	F	[kN]	13,2	20,6	29,6	40,3	52,7	82,3	128,6	161,3	210,6
Displacement	δ _{V0}	[mm]	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	$\delta_{V\infty}$	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

¹⁾ These values are suitable for each temperature range and categories specified in Annex B1

VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Performances Displacement under service loads Annex C7

Table C12: Characteristic values for tension resistance for seismic performance category C1 – threaded rods. Working life of 50 and 100 years.

Size			M12	M16	M20		
Steel failure							
Characteristic resistance	N _{Rk,s,eq,C1}	[kN]		1,0 x $N_{Rk,s}$			
Partial factor ¹⁾	γ̃Ms,N	[-]	See A	Annex C1 – Ta	ble C1		
Combined pull-out and concrete cone failure	·						
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,C1}	[N/mm²]	4,2	3,7	3,7		
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,C1}	[N/mm²]	3,0	2,7	2,7		
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,C1}	[N/mm ²]	1,6	1,4	1,4		
Increasing factor for C30/37							
Increasing factor for C40/50	Ψc	[-]	1,0				
Increasing factor for C50/60							
Installation factor for category I1 ¹⁾		r 1		1,0			
Installation factor for category I2 ¹⁾	Yinst	γinst [-]		1,2			

Table C13: Characteristic values for shear resistance for seismic performance category C1 – threaded rods. Working life of 50 and 100 years.

Size		M12	M16 M20						
Steel failure									
Characteristic resistance	$V_{Rk,s,eq,C1}$	[kN]	0,7 x V ⁰ _{Rk,s}						
Partial factor ¹) γ _{Ms,V} [-] See Annex C1 – Table C1									
¹⁾ In the absence of other national regulation									

Table C14: Reduction factor for annular gap. Working life of 50 and 100 years.

Reduction factor for annular gap			
Without annular gap filling	$lpha_{gap}$	[-]	0,5
With annular gap filling	$lpha_{gap}$	[-]	1,0

VI 100-PRO
VI 100-PRO-W
VI 100-PRO-T

Annex C8

of European Technical Assessment ETA-14/0119

Performances Characteristic resistance under tension and shear loads for seismic action category C1 – threaded rods

Table C15: Characteristic values for tension resistance for seismic performance category C2 – threaded rods. Working life of 50 and 100 years.

Size			M12	M16	
Steel failure					
Characteristic resistance	N _{Rk,s,eq,C2}	[kN]	1,0 x	N _{Rk,s}	
Partial factor ¹⁾	γ _{Ms,N} ¹⁾	[-]	See Annex C	1 – Table C1	
Combined pull-out and concrete cone failure		<u> </u>			
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,eq,C2}	[N/mm ²]	1,6	1,7	
Characteristic bond resistance temperature range -40°C / +80°C	$\tau_{\rm Rk,eq,C2}$	[N/mm ²]	1,2	1,2	
Characteristic bond resistance temperature range -40°C / +120°C	τ _{Rk,eq,C2}	[N/mm ²]	0,6	0,7	
Increasing factor for C30/37					
Increasing factor for C40/50	Ψc	[-]	1	,0	
Increasing factor for C50/60					
Installation factor for category I1 ¹⁾		r 1	1	,0	
Installation factor for category I2 ¹⁾	γinst	[-]	1	1,2	
¹⁾ In the absence of other national regulation	·				

Table C16: Characteristic values for shear resistance for seismic performance category C2 – threaded rods. Working life of 50 and 100 years.

Size	M12	M16							
Steel failure									
Characteristic shear resistance	V _{Rk,s,eq,C2}	[kN]	0,53 x V ⁰ _{Rk,s}	0,46 x V ⁰ _{Rk,s}					
Partial factor ¹⁾	γ _{Ms,V}	[-]	See Annex C1 – Table C1						
¹⁾ In the absence of other national regulation									

Table C17: Reduction factor for annular gap. Working life of 50 and 100 years.

Reduction factor for annular gap								
Without annular gap filling	$lpha_{gap}$	[-]	0,5					
With annular gap filling	α_{gap}	[-]	1,0					

Table C18: Displacements under tensile and shear loads for seismic performance category C2 – threaded rods.

Size			M12	M16
Displacements for tensile and shear load for seismic p	performance categor	y C2		
Displacement in tensile at damage limitation state	$\delta_{\text{N,eq,C2 (DLS)}}$	[mm]	0,20	0,23
Displacement in tensile at ultimate limit state	$\delta_{N,eq,C2} \text{ (ULS)}$	[mm]	0,33	1,04
Displacement in shear at damage limitation state	$\delta_{V,eq,C2}~(\text{DLS})$	[mm]	2,01	0,70
Displacement in shear at ultimate limit state	$\delta_{V,eq,C2}~(\text{ULS})$	[mm]	4,68	2,12

V	1	100-PRO	
VI	1	00-PRO-W	l
VI	1	00-PRO-T	

Annex C9

Performances Characteristic resistance and displacements under tension and shear loads for seismic performance category C2 – threaded rods

Characteristic bond resistance of a single bonded fastener $\tau_{Rk,fl,p}(\theta)$ for concrete strength classes C20/25 to C50/60 with all drilling methods under fire conditions for working life of 50 and 100 years.

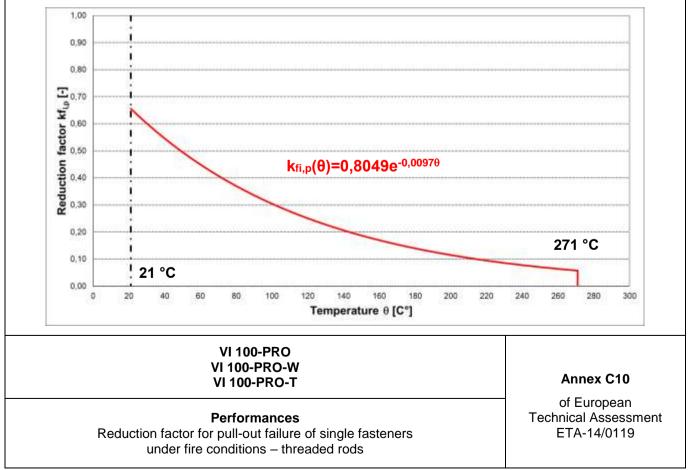
The characteristic bond resistance of a single bonded fastener under fire conditions $\tau_{Rk,fi,p}$ for a given temperature (θ) shall be calculated using the following equations:

 $\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,C20/25}$ $\tau_{Rk,fi,p}(\theta) = k_{fi,p}(\theta) * \tau_{Rk,cr,100,C20/25}$

Where:

$$\begin{split} & if \ \theta \le \theta_{max} \qquad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0.8049 \cdot e^{-0.0097 \cdot \theta} \le 1.0 \\ & if \ \theta > \theta_{max} \qquad k_{fi,p}(\theta) = \ k_{fi,p}(\theta) = 0 \end{split}$$

 $\theta_{max} = 271^{\circ}C$


 $\tau_{Rk,fi,p}$ = characteristic bond resistance for cracked concrete under fire exposure for a given temperature (θ)

 $k_{fi,p(\theta)}$ = reduction factor for bond resistance under fire exposure

 $\tau_{Rk,cr,C20/25}$ = characteristic bond resistance for cracked concrete for concrete strength class C20/25 for a working life of 50 years given in Table C3.

 $\tau_{Rk,cr,100,C20/25}$ = characteristic bond resistance for cracked concrete for concrete strength class C20/25 for a working life of 100 years given in Table C3.

Figure C1: Reduction factor $k_{fi,p}(\theta)$

4,90

3,92

conditions – threaded	rods.					
Size			M10	M12	M16	M20
Steel failure						
	N _{Rk,s,fi (30)}	[kN]	0,87	1,70	3,14	4,90
Steel class 5.8 to 8.8	N _{Rk,s,fi (60)}	[kN]	0,75	1,28	2,36	3,68
	N _{Rk,s,fi} (90)	[kN]	0,58	1,11	2,04	3,19
	N _{Rk,s,fi (120)}	[kN]	0,46	0,85	1,57	2,45
Stainless steel A4	N _{Rk,s,fi (30)}	[kN]	1,45	2,55	4,71	7,35
	N _{Rk,s,fi (60)}	[kN]	1,16	2,13	3,93	6,13

Table C19: Characteristic resistance under tension load in case of steel failure under fire conditions – threaded rods.

Table C20: Characteristic resistance under shear load with and without lever arm in case of steel failure under fire conditions – threaded rods.

0,93

0,81

1,70

1,36

3,14

2,51

N_{Rk,s,fi (90)}

N_{Rk,s,fi (120)}

[kN]

[kN]

Size			M10	M12	M16	M20
Steel failure		<u> </u>				
Steel class 5.8 to 8.8	V _{Rk,s,fi (30)}	[kN]	0,87	1,70	3,14	4,90
	V _{Rk,s,fi (60)}	[kN]	0,75	1,28	2,36	3,68
Sieer class 5.0 to 6.0	V _{Rk,s,fi (90)}	[kN]	0,58	1,11	2,04	3,19
	V _{Rk,s,fi (120)}	[kN]	0,46	0,85	1,57	2,45
	V _{Rk,s,fi (30)}	[kN]	1,45	2,55	4,71	7,35
Stainless steel A4	V _{Rk,s,fi (60)}	[kN]	1,16	2,13	3,93	6,13
Stamless steel A4	V _{Rk,s,fi} (90)	[kN]	0,93	1,70	3,14	4,90
	V _{Rk,s,fi (120)}	[kN]	0,81	1,36	2,51	3,92
	M _{Rk,s,fi (30)}	[Nm]	1,1	2,7	6,7	13,0
Steel class 5.8 to 8.8	M _{Rk,s,fi (60)}	[Nm]	1,0	2,0	5,0	9,7
Steel Class 5.6 10 6.6	M _{Rk,s,fi} (90)	[Nm]	0,7	1,7	4,3	8,4
	M _{Rk,s,fi (120)}	[Nm]	0,6	1,3	3,3	6,5
	M _{Rk,s,fi (30)}	[Nm]	1,9	4,0	10,0	19,5
Stainless steel A4	M _{Rk,s,fi (60)}	[Nm]	1,5	3,3	8,3	16,2
Stamless steel A4	M _{Rk,s,fi (90)}	[Nm]	1,2	2,7	6,7	13,0
	M _{Rk,s,fi (120)}	[Nm]	1,0	2,1	5,3	10,4

VI 100-PRO VI 100-PRO-W VI 100-PRO-T

Annex C11

of European Technical Assessment ETA-14/0119

Performances Characteristic resistance for steel under fire conditions – threaded rods

Table C21: Characteristic resistance under tension load in case of concrete cone and splitting failure under fire conditions – threaded rods.

Size			M10	M12	M16	M20
Concrete cone failure						
	N ⁰ _{Rk,c,fi (30)}	[kN]				
Steel class 5.8 to 8.8	N ⁰ _{Rk,c,fi (60)}	[kN]	$\frac{h_{ef}}{200} \cdot N^0_{Rk,c} \le N^0_{Rk,c}$		$_{,c} \leq N^0_{Rk,c}$	
Stainless steel A4	N ⁰ _{Rk,c,fi (90)}	[kN]		200		
	N ⁰ _{Rk,c,fi (120)}	[kN]	[kN] $0.8 \cdot \frac{h_{ef}}{200} \cdot N^0_{Rk,c} \leq N^0_{Rk,r}$	$I^0_{Rk,c} \leq N^0_{Rk,c}$		
Characteristic spacing	S _{cr,N,fi}	[mm]		4.	h _{ef}	
Characteristic edge distance	C _{cr,N,fi}	[mm]		2.	h _{ef}	

Table C22: Characteristic resistance under shear load in case of pry-out failure under fire conditions – threaded rods.

Size	M10	M12	M16	M20		
Pryout failure						
	V _{Rk,cp,fi (30)}	[kN]				
Steel class 5.8 to 8.8	V _{Rk,cp,fi (60)}	[kN]		$k_8 \cdot N_R$	k,c,fi (90)	
Stainless steel A4	V _{Rk,cp,fi (90)}	[kN]				
	V _{Rk,cp,fi (120)}	[kN]		k ₈ ∙N _R ⊮	s,c,fi (120)	

Table C23: Characteristic resistance under shear load in case of concrete edge failure under fire conditions – threaded rods.

Size	M10	M12	M16	M20			
Concrete edge failure							
	V _{Rk,c,fi} (30)	[Nm]					
Steel class 5.8 to 8.8	V _{Rk,c,fi (60)}	[Nm]	$0,25 \cdot V^0_{Rk,c}$				
Stainless steel A4	V _{Rk,c,fi (90)}	[Nm]					
	V _{Rk,c,fi (120)}	[Nm]		0,20	V ⁰ _{Rk,c}		

Performances

Characteristic resistance for concrete failure under fire conditions – threaded rods